Red Tape and Delayed Entry

[Accompanying Paper: Entry Regulation and Inter-sectoral Reallocation]

Antonio Ciccone and Elias Papaioannou

UPF-ICREA and CEPR ECB (Financial Research)

European Economic Association Annual Meeting
Vienna, August 2006
Does red tape slow down entry?

— Theoretical model of red tape (administrative entry delays; product market regulation), entry (introduction of new varieties), and industry growth

— Empirical analysis of effects of country-level entry regulation on industry-level entry (industry growth in companion paper)
Related (Empirical) Literature

— Cross-country cross-industry approach to determinants of growth:
 Started by Rajan-Zingales (AER 1998); recently extended to other fields in development-growth economics

— Product Market Regulation (Red Tape) and entry/growth:
 Fisman and Sarria-Allende (NBER 2004); Klapper, Laeven and Rajan (JFE forthcoming); Perotti and Volpin (CEPR 2004)
Presentation Overview

1. Model
2. Data
3. Results
 1. Using US-based proxies only
 2. Accounting for measurement error [bias when employing US (or any other country) data to construct worldwide industry characteristics]
4. Summary
Entry Regulation, Entry, and Growth in a World Equilibrium Model

ANTICIPATED and unanticipated INDUSTRY-LEVEL SHIFTS in PRODUCTIVITY and PREFERENCES

PROMPT-ENTRY EQUILIBRIUM: Entry eliminates expected profits

INDUSTRY VALUE ADDED GROWTH

Equilibrium with Prompt Entry/Frictionless Equilibrium
Entry Regulation, Entry, and Growth in a World Equilibrium Model

ANTICIPATED and unanticipated INDUSTRY-LEVEL SHIFTS in PRODUCTIVITY and PREFERENCES

PROMPT-ENTRY EQUILIBRIUM: Entry eliminates expected profits

INDUSTRY VALUE ADDED GROWTH

Entry Regulation Potentially slows down ENTRY

Theoretical Model – Data – Results – Conclusion
Set-Up: Multi-Industry World Equilibrium Model

Love-for-variety Preferences

\[U_t = \int_0^1 \left(\int_0^N \frac{\sigma-1}{\sigma} B_{i,n} \, dn \right)^{\sigma/\sigma-1} di \]

\[\sigma > 0 \]

Industries

Countries

Elasticity of substitution between existing national and international varieties

ENDOGENOUS Set of Varieties

\[C_{i,n,t} = \left(\int_0^{V_{i,n}} c_{i,n,v,t} \, dv \right)^{\varepsilon/\varepsilon-1} \]

\[\varepsilon > 1 \]

Elasticity of substitution between varieties in the same country-industry

Technology

\[l_{i,n,v,t} = \frac{z_{i,n,v,t}}{A_{i,n,t}} + f_{i,n,t} \quad z_{i,n,v,t} \geq 0 \]
Profit Maximization of Monopolistically Competitive Firms

Firm-Profit Maximization [MR=MC]

\[E_{t-1} \left(A_{i,n,t} p_{i,n,v,t} \right) \text{ price-markup} = w_{n,t} \]

Inverse Demand in Symmetric Equilibrium

\[p_{i,n,t} = B_{i,n,t} \left(\frac{Y_t}{P_{i,t}^{1-\sigma}} \right)^{\frac{1}{\sigma}} V_{i,n,t}^{\frac{1-\sigma}{\sigma}} z_{i,n,t}^{\frac{1}{\sigma}} \]

Production of typical variety

Set of varieties

Price of typical variety
Inverse Demand Elasticities

... with respect to quantity of existing varieties:

\[\frac{1}{\sigma} \]
where \(\sigma \) is the elasticity of substitution among existing domestic and international varieties
(between 3 and 7 according to empirical work)

... with respect to quantity of new varieties (\(\varepsilon > \sigma \)):

\[\frac{1}{\sigma} \frac{\varepsilon - \sigma}{\varepsilon - 1} < \frac{1}{\sigma} \]
if \(\sigma > 1 \)
Inverse Demand Elasticities and Returns with Entry

Marginal Revenue Industry 1

= p(1)/μ

Employment Industry 1

ε > σ
Inverse Demand Elasticities and Industry Returns with No Entry (Fixed Set of Varieties)

Marginal Revenue Industry 1

\[= \frac{p(1)}{\mu} \]
Benchmark: Equilibrium with Prompt Entry

Equilibrium Measure of Varieties

\[
V_{i,n,t}^* = \theta E_{t-1} \left(\frac{A_{i,n,t}^\sigma B_{i,n,t}^{\sigma-1}}{P_{i,t}^{1-\sigma} W_{n,t}^\sigma} Y_t \right)^{\frac{\varepsilon-1}{\varepsilon-\sigma}}
\]

Equilibrium Employment Allocation

\[
L_{i,n,t}^* = l_{i,n,t}^* V_{i,n,t}^* = \theta L_{t-1} \left(\frac{A_{i,n,t}^\sigma B_{i,n,t}^{\sigma-1}}{P_{i,t}^{1-\sigma} W_{n,t}^\sigma} Y_t \right)^{\frac{\varepsilon-1}{\varepsilon-\sigma}}
\]

Theoretical Model — Data — Results — Conclusion

• ANTICIPATED technology and demand shifts;
 &
 • World income
 • International competition
 • Domestic factor price

All adjustment at extensive margin
Demand Shifts and Prompt Entry Equilibrium Growth (Without Sectoral Technology Differences)

Marginal Revenue Industry 1
\[= \frac{p(1)}{\mu} \]

Marginal Revenue Industry 2
\[= \frac{p(2)}{\mu} \]

Prompt-Entry growth (“Potential growth”)
Product Market Regulation (PMR) and Slow Entry

Entry and Industry Value Added Growth

\[Y_{i,n,t} = \theta_Y \left(V_{i,n,t}^{\sigma-1} \left(V_{i,n,t}^{*} \right)^{\varepsilon-\sigma} \left(A_{i,n,t}^{Unanticipated} \right)^{\sigma-1} B_{i,n,t}^{Unanticipated} \right) \]

Adjustment Equation

\[\Delta \ln V_{i,n} = (1 - \theta_{PMR_n}) \Delta \ln V_{i,n}^{*} \]

- ANTICIPATED technology and demand shifts;
- World income
- International competition
- Domestic factor price

Unanticipated technology and demand shifts
Demand Shifts and Prompt Entry Equilibrium Growth

Marginal Revenue Industry 1

= \frac{p(1)}{\mu}

Marginal Revenue Industry 2

= \frac{p(2)}{\mu}

Employment Industry 1

Employment Industry 2

Prompt-Entry growth ("Potential growth")
Demand Shifts and No Entry Equilibrium Growth

Marginal Revenue Industry 1 = p(1)/μ

Marginal Revenue Industry 2 = p(2)/μ

Actual growth

Prompt-Entry growth ("Potential growth")

Theoretical Model – Data – Results – Conclusion
Worldwide Industry Allocation Shifts

\[\Delta \ln A_{i,n}^{\text{Anticipated}} = a + a_n + a_i + \zeta_{i,n}^a \quad ; \quad \Delta \ln B_{i,n}^{\text{Anticipated}} = b + b_n + b_i + \zeta_{i,n}^b \]

\[\Delta \ln L_{i,n}^* = \Delta \ln L^* + \Delta \ln L_n^* + \Delta \ln L_i^* + u_{i,n} \]

Worldwide sector-specific employment (input) reallocation
Worldwide Industry Allocation Shifts

\[\Delta \ln A_{i,n}^{Anticipated} = a + a_n + a_i + \zeta_{i,n}^a ; \quad \Delta \ln B_{i,n}^{Anticipated} = b + b_n + b_i + \zeta_{i,n}^b \]

\[\Delta \ln L_{i,n}^* = \Delta \ln L^* + \Delta \ln L_n^* + \Delta \ln L_i^* + u_{i,n} \]

Estimating Equation (Entry)

\[\Delta \ln V_{i,n} = \delta_n + \delta_i - \theta(PMR_n \Delta \ln L_i^*) + \zeta_{i,n} \]

Growth rate of establishment

Worldwide sector-specific employment (input) reallocation

Employment (input) growth proxy, using US data
Data

1. Country-Industry Level (from UNIDO)
 • Log change in number of establishments (in the 1980s)
 • 45 countries; 27-28 manufacturing industries (more than 1000 observations)

2. Country-Level
 • Entry regulation indicators from Djankov et al. (QJE 2002); focus on TIME & PROCEDURES to start a business

3. Industry-Level (from NBER Manufacturing database)
 • Employment growth (factor reallocation)
 • Other industry characteristics (sales growth)
Least Squares Estimates (A)

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TimePcd X Employment Realloc</td>
<td>-0.1679</td>
<td>-0.1859</td>
<td>-0.1406</td>
<td>-0.1491</td>
</tr>
<tr>
<td>([TIME \times EMPGR])</td>
<td>(3.93)</td>
<td>(3.75)</td>
<td>(3.20)</td>
<td>(2.75)</td>
</tr>
<tr>
<td>LMR X Employment Realloc</td>
<td>0.3417</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>([LMR \times EMPGR])</td>
<td>(0.88)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Legal Inefficiency X Employment Realloc</td>
<td>-0.0845</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>([LAWINEF \times EMPGR])</td>
<td></td>
<td>(1.42)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Income (GDP) X Employment Realloc</td>
<td>0.0438</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>([Y \times EMPGR])</td>
<td></td>
<td>(0.54)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial Log Number of Establishments</td>
<td>-0.0356</td>
<td>-0.0357</td>
<td>-0.0356</td>
<td>-0.0356</td>
</tr>
<tr>
<td>([ESTABL])</td>
<td>(5.94)</td>
<td>(5.95)</td>
<td>(5.94)</td>
<td>(5.94)</td>
</tr>
<tr>
<td>Initial Log Employment</td>
<td>0.0223</td>
<td>0.0224</td>
<td>0.0222</td>
<td>0.0222</td>
</tr>
<tr>
<td>([SIZE])</td>
<td>(5.20)</td>
<td>(5.22)</td>
<td>(5.17)</td>
<td>(5.16)</td>
</tr>
<tr>
<td>adjusted R-squared</td>
<td>0.569</td>
<td>0.569</td>
<td>0.569</td>
<td>0.569</td>
</tr>
<tr>
<td>Observations</td>
<td>1162</td>
<td>1162</td>
<td>1162</td>
<td>1162</td>
</tr>
<tr>
<td>Countries</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>Country and Industry Fixed-Effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Least Squares Estimates (B)

<table>
<thead>
<tr>
<th>Model</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TimePcd X Employment Reallocation</td>
<td>-0.1507</td>
<td>-0.1344</td>
<td>-0.3138</td>
</tr>
<tr>
<td>([TIME \times EMPGR])</td>
<td>(3.40)</td>
<td>(3.09)</td>
<td>(3.09)</td>
</tr>
<tr>
<td>Finance X External Finance Dependence</td>
<td>0.0153</td>
<td></td>
<td>Rajan and Zingales (1998)</td>
</tr>
<tr>
<td>([FD \times EXTFIN])</td>
<td>(3.12)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Legal Inefficiency X External Finance Dependence</td>
<td></td>
<td>-0.0133</td>
<td>Perotti and Volpin (2004)</td>
</tr>
<tr>
<td>([LAWINEF \times EXTFIN])</td>
<td></td>
<td>(2.71)</td>
<td></td>
</tr>
<tr>
<td>TimePcd X Sales Growth</td>
<td></td>
<td>0.1564</td>
<td>Fisman and Sarria-Allende (2004)</td>
</tr>
<tr>
<td>([TIME \times SALESGR])</td>
<td></td>
<td>(1.60)</td>
<td></td>
</tr>
<tr>
<td>Initial Log Number of Establishments</td>
<td>-0.0361</td>
<td>-0.0356</td>
<td>-0.0360</td>
</tr>
<tr>
<td>([ESTABL])</td>
<td>(5.79)</td>
<td>(5.95)</td>
<td>(5.99)</td>
</tr>
<tr>
<td>Initial Log Employment</td>
<td>0.0212</td>
<td>0.0219</td>
<td>0.0225</td>
</tr>
<tr>
<td>([SIZE])</td>
<td>(4.81)</td>
<td>(5.09)</td>
<td>(5.26)</td>
</tr>
<tr>
<td>adjusted R-squared</td>
<td>0.574</td>
<td>0.571</td>
<td>0.570</td>
</tr>
<tr>
<td>Observations</td>
<td>1162</td>
<td>1162</td>
<td>1162</td>
</tr>
<tr>
<td>Countries</td>
<td>43</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>Country and Industry Fixed-Effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Measurement Error when Using US Employment Reallocation → Biased Estimates?

\[\Delta \ln L_{i,US} = \Delta \ln L_{i,US}^{\text{Worldwide Shocks Only}} + \Delta \ln L_{i,US}^{\text{Idiosyncratic}} + \Delta \ln L_{i,US}^{\text{PMR}} \]

“Pure” US idiosyncrasies:
— Classical ME → Attenuation Bias

Demand and supply shocks specific to economies with US PMR
— Overestimate the role of PMR

NET BIAS can be upward or downward
IV Approach to Measurement Error

Estimate $\Delta \ln L_{i,US}^{\text{Worldwide}}$ and use as instrument for $\Delta \ln L_{i,US}$

(1) regress $\Delta \ln L_{i,n}$ on constant (Θ_i) and PMR_n (slope Λ_i)

(2) $\Delta \ln L_{i,US}^{\text{Worldwide,EST}} = \Theta_i^{\text{EST}} + \Lambda_i^{\text{EST}} PMR_{US}$

- GIVEN industry
- ACROSS countries without US
Predicted and Actual US Industry Employment Growth

Theoretical Model – Data – Results – Conclusion

slope = 0.9
t-stat = 6.07
New Approach: Instrumental Variable Estimates

\[
\begin{align*}
\text{TimePcd} & \times \text{Factor Reallocation} & -0.2399 \\
\text{[TIME} \times \text{EMPGR]} & & (3.58)
\end{align*}
\]

-0.17 in LS

Observations 1162
Countries 45
Industry Fixed-Effects Yes
Country Fixed-Effects Yes
Double Instrumental Variable Estimates

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TimePcd X Employment Reallocation</td>
<td>-0.3560</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[TIME X EMPGR]</td>
<td></td>
<td>(2.50)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TimePcd X Employment Reallocation</td>
<td>-0.5615</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[PROCED X EMPGR]</td>
<td></td>
<td>(2.54)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TimePcd X Employment Reallocation</td>
<td>-0.5919</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[STEPS X EMPGR]</td>
<td></td>
<td>(2.79)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TimePcd X Employment Reallocation</td>
<td>-1.3840</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[COST X EMPGR]</td>
<td></td>
<td>(2.52)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TimePcd X Employment Reallocation</td>
<td>-1.2822</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[TIMECOST X EMPGR]</td>
<td></td>
<td>(3.18)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>1162</td>
<td>1162</td>
<td>1162</td>
<td>1162</td>
<td>1162</td>
</tr>
<tr>
<td>Countries</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>Industry and Country Fixed-Effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Conclusion

1. We present a multi-industry world equilibrium model of entry regulation, entry, and growth
 — Entry regulation (red tape) affects growth when industry demand is more price elastic when varieties adjust

2. Empirically, entry is slower in expanding industries in countries with greater bureaucratic-administrative delays to start up a new business
 — Account for measurement error when proxying (latent) industry characteristics with data from a benchmark country
 — Results do not seem to reflect labor market institutions, legal norms, or the overall level of development